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33 ABSTRACT 

34 

35 Biophysical processes that affect subsurface water clarity play a key role in ecosystem 

36 function. However, subsurface water clarity is poorly monitored in marine ecosystems because 

37 doing so requires in-situ sampling that is logistically difficult to conduct and sustain. Novel 

38 solutions are thus needed to improve monitoring of subsurface water clarity. To that end, we 

39 developed a sampling method and data processing algorithm that enable the use of bottom trawl 

40 fishing gear as a platform for conducting subsurface water clarity monitoring using trawl-

41 mounted irradiance sensors without disruption to fishing operations. The algorithm applies 

42 quality control checks to irradiance measurements and calculates the downwelling diffuse 

43 attenuation coefficient, Kd, and optical depth, ζ– apparent optical properties (AOPs) that 

44 characterize the rate of decrease in downwelling irradiance and relative irradiance transmission 

45 to depth, respectively. We applied our algorithm to irradiance measurements, obtained using 

46 bottom-trawl-mounted archival tags equipped with a photodiode collected during NOAA’s 

47 Alaska Fisheries Science Center annual summer bottom trawl surveys of the eastern Bering Sea 

48 continental shelf from 2004 to 2018. We validated our AOPs by quantitatively comparing 

49 surface-weighted Kd from tags to the multi-sensor Kd(490) product from the Ocean Colour 

50 Climate Change Initiative project (OC-CCI) and qualitatively evaluating whether tag Kd was 

51 consistent with patterns of subsurface chlorophyll-a concentrations predicted by a coupled 

52 regional physical-biological model (Bering10K-BESTNPZ). We additionally examined patterns 

53 and trends in water clarity in the eastern Bering Sea. Key findings are: 1) water clarity decreased 

54 significantly from 2004 to 2018; 2) a recurrent, pycnocline-associated, maximum in Kd occurred 

55 over much of the northwestern shelf, putatively due to a subsurface chlorophyll maximum; and 
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56 3) a turbid bottom layer (nepheloid layer) was present over a large portion of the eastern Bering 

57 Sea shelf. Our study demonstrates that bottom trawls can provide a useful platform for 

58 monitoring water clarity, especially when trawling is conducted as part of a systematic stock 

59 assessment survey. 

60 

61 KEYWORDS: apparent optical properties, bottom trawl survey, eastern Bering Sea, nepheloid 

62 layer, regional ocean modeling system, remote sensing, subsurface chlorophyll maximum, 

63 archival tag, downwelling diffuse attenuation coefficient, optical depth 
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64 1. INTRODUCTION 

65 

66 Water clarity regulates heat transfer and mediates rates of primary production that set the 

67 baseline for total ecosystem production and food chain efficiency (Dickman et al., 2008; Kirk, 

68 2011; Opdal et al., 2019). Water clarity also affects visual processes, so changes in water clarity 

69 can shift the balance of competition among animals with different visual capabilities, sensory 

70 modes of foraging, and vulnerability to visual predation (Aksnes et al., 2004; Eiane et al., 1997). 

71 Consequently, changes in water clarity can provide useful insights into ecosystem change. 

72 Near-surface water clarity has changed over multiple decades in many marine regions, 

73 providing information on how changes in water clarity are associated with changes in the 

74 structure and function of marine ecosystems (Aksnes, 2007; Aksnes and Ohman, 2009; Capuzzo 

75 et al., 2015; Haraldsson et al., 2012). These insights result from systematic monitoring of near-

76 surface water clarity conducted since the invention of the Secchi disk in 1865 (Pitarch, 2020). In 

77 recent decades, satellite-based remote sensing has vastly improved the capacity to monitor near-

78 surface water clarity under clear-sky conditions, at a global extent, with increasingly fine spatial 

79 and temporal resolution. By combining data sets from multiple sampling methods (e.g., Secchi 

80 disk, Forel-Ule color comparator, satellite based passive remote sensing), many marine systems 

81 have time-series that inform how near-surface water clarity has changed over multiple decades, 

82 affecting ecological processes across multiple spatial, temporal, and organizational scales 

83 (Aksnes and Ohman, 2009; Capuzzo et al., 2015; Dupont and Aksnes, 2013; Sandén and 

84 Håkansson, 1996; Tolvanen et al., 2013; Wernand et al., 2013; Boyce et al., 2014). 

85 In contrast to extensive near-surface monitoring, subsurface water clarity remains poorly 

86 characterized due to the logistical difficulties of sampling. Despite near global coverage, passive 
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87 satellite-based remote sensing only characterizes near-surface water clarity down to first optical 

88 depth (i.e., depth of 10% downwelling diffuse irradiance). Subsurface monitoring requires in situ 

89 sampling from crewed vessels, fixed moorings, or mobile samplers such as Biogeochemical-

90 Argo floats and autonomous underwater vehicles (Bittig et al., 2019; Brown et al., 2004; 

91 Mitchell et al., 2018). While autonomous mobile samplers have continually improved (Hemsley 

92 et al., 2015; Mitchell et al., 2018), they have not achieved ubiquitous coverage due to cost, 

93 relatively slow speed, currents, and potential for interference with vessel traffic. 

94 Despite generally limited monitoring, it is clear that changes in subsurface water clarity 

95 are indicative of ecosystem change. Subsurface algal blooms generate subsurface chlorophyll 

96 maximum layers that contribute substantially to total productivity in many marine systems 

97 (Cullen, 2015). Changes in the timing or intensity of subsurface blooms would therefore be 

98 expected to alter subsurface water clarity. In addition, currents drive the resuspension of seafloor 

99 sediments (organic and inorganic), producing nepheloid layers that may play an important role in 

100 nutrient cycling, benthic suspension and filter feeding, and animal distribution and behavior 

101 (Jumars et al., 2015; McCave, 2019; Riisgård and Larsen, 2015). Subsurface chlorophyll 

102 maximum layers and nepheloid layers occur too deep to be monitored using passive satellite-

103 based remote sensing (Barbieux et al., 2019; Hostetler et al., 2018; Schulien et al., 2017). 

104 One option to improve subsurface monitoring is to deploy optical sampling equipment on 

105 existing platforms that are not explicitly designed to collect optical data. For example, 

106 attenuation coefficients derived from irradiance measurements collected using light-sensitive 

107 archival tags attached to pinnipeds and large pelagic fishes are used to make reasonably accurate 

108 predictions of chlorophyll-a concentration in the mixed layer (Jaud et al., 2012; O’Toole et al., 

109 2017, 2014) and at fine-scale vertical resolution within the water column (Bayle et al., 2015; 
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110 Nowak, 2019; Teo et al., 2009). However, unconventional sampling platforms can make it 

111 challenging to obtain measurements that are accurate, precise, reproducible and comparable to 

112 conventional data. 

113 Given their regular frequency of sampling, standardized approach to data collection, and 

114 often large spatial coverage, fisheries-independent bottom trawl surveys are an appealing 

115 platform for water clarity monitoring. Already, physical ocean data collected during bottom trawl 

116 surveys have been used to characterize ocean circulation patterns and the fine-scale thermohaline 

117 structure of the water column (Cokelet, 2016). These data have also been used as covariates in 

118 species distribution models that have improved understanding of habitat requirements of marine 

119 fauna (Laman et al., 2018, 2014; Rooper et al., 2019). The addition of water clarity information 

120 will likely improve understanding of species-environment relationships because the intensity and 

121 spectrum of environmental light affect the sensory capabilities of aquatic animals (Britt et al., 

122 2001; Caves et al., 2017; Lythgoe, 1972; Schweikert et al., 2018). Further, combining water 

123 clarity monitoring with biogeochemical sampling would facilitate the development of bio-optical 

124 models that may be used to estimate the composition of optically active constituents of the water 

125 column (e.g., chlorophyll-a, chromophoric dissolved organic matter [CDOM]). 

126 In this study, we derived apparent optical properties (AOPs), the downwelling diffuse 

127 attenuation coefficient (Kd) and optical depth (ζ), from bottom-trawl-mounted light-sensitive 

128 archival tags to evaluate the utility of bottom trawl surveys as a platform for monitoring surface 

129 and subsurface water clarity. Our study region was the eastern Bering Sea, a subarctic semi-

130 enclosed sea with an expansive shelf where summer bottom trawl surveys have been conducted 

131 annually since 1982 and water column light data have been collected annually since 2004. To 

132 validate trawl-derived AOPs, we 1) quantitatively evaluate if near-surface tag-based attenuation 
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133 coefficients are consistent with attenuation coefficients derived from satellite-based 

134 measurements of ocean color, and 2) qualitatively evaluate whether the patterns in AOPs are 

135 consistent with predictions from a coupled physical-biological model of primary production. We 

136 describe patterns of variation in AOPs in the eastern Bering Sea during summer 2004–2018 and 

137 synthesize our findings with the current understanding of physical and biological processes that 

138 drive variation in water clarity in the eastern Bering Sea. Finally, we provide recommendations 

139 for how sampling during bottom trawl surveys can be extended to improve monitoring of water 

140 clarity. 

141 

142 2. REGIONAL SETTING 

143 

144 The eastern Bering Sea is a highly productive subarctic coastal ecosystem that supports 

145 several of the world’s largest commercial fisheries along with large populations of marine 

146 mammals and seabirds. The broad continental shelf of the eastern Bering Sea slopes gently from 

147 the Alaska mainland to the continental shelf break at ~180 m (Fig. 1). Factors that influence 

148 water clarity in the eastern Bering Sea are: surface and subsurface phytoplankton, chromophoric 

149 dissolved organic matter (CDOM) and sediment originating from rivers, and resuspension of 

150 seafloor sediment driven by currents, winds, and tides (i.e., nepheloid layers). The relative 

151 importance of these factors varies over space and time due to physical and biogeochemical 

152 processes. 
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153 

154 Figure 1. Eastern Bering Sea bottom trawl survey area, showing the average sampling day of year during 2004–2018 

155 for each of the 376 survey grid stations. Thick black lines and white points denote the location of shelf-wide cross-

156 sections and stations highlighted in analyses of the vertical structure of the water column. Inner (0–50 m bottom 

157 depth), middle (50–100 m), and outer (100–180 m) domains are shown. 

158 During summer, the eastern Bering Sea continental shelf is generally divided into three 

159 biophysical domains: the inner domain (0–50 m bottom depth), middle domain (50–100 m), and 

160 outer domain (100–180 m) (Coachman, 1986). The inner and middle domains are divided by an 

161 inner front that occurs roughly along the 50 m isobath. The middle and outer shelf domains are 

162 divided by a front that occurs roughly along the 100 m isobath. The domains have differences in 

163 biological processes, physical processes, and water column structure. The inner domain has 

164 relatively low salinity and features a fully-mixed or weakly stratified water column maintained 

165 by wind and tidal mixing (Coachman, 1986; Kachel et al., 2002; Ladd and Stabeno, 2012). North 

166 of Nunivak Island (~62°N), the inner front is located inshore of the 50 m isobath due to weaker 

167 tidal mixing and alongshore northward advection of freshwater input from rivers (Danielson et 

168 al., 2011; Ladd and Stabeno, 2012; Mordy et al., 2017). South of ~57°N, the inner domain can 
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169 extend offshore to depths of ~70 m (Cokelet, 2016). The middle domain features a stratified two-

170 layer water column with a sharp pycnocline. The density structure over the middle domain is 

171 maintained by wind mixing of the surface layer and tidal mixing of the bottom layer (Coachman, 

172 1986; Stabeno et al., 2012a). The outer domain is characterized by a wind-mixed surface layer 

173 and a tidally mixed bottom layer with a gradual density transition between the two domains. 

174 -1 Summertime geostrophic current velocities are slow, averaging 0–2 cm s over most of the 

175 eastern Bering Sea shelf, with a net northward transport through Bering Strait (Cokelet, 2016). 

176 Stronger flow is observed along the 50 m and 100 m isobaths, which accounts for 50% of 

177 transport through Bering Strait (Stabeno et al., 2016). 

178 The extent of seasonal sea-ice and timing of sea-ice melt sets up the summer 

179 thermohaline structure of the eastern Bering Sea. Interannual variation in wind velocity, air 

180 temperature, and water temperature drive variation in winter sea-ice extent (Stabeno et al., 2017). 

181 Since the 1970s, at maximum, seasonal sea ice has extended to the Alaska Peninsula (most 

182 recently in 2012), while at its minimum in 2018, the ice edge was north of St. Matthew Island 

183 (Stabeno and Bell, 2019). As sea-ice melts in the spring–summer, it cools and freshens the water 

184 column and causes the formation of a cold pool (bottom temperature <2° C) over the middle and 

185 outer shelf. Thus, the cold pool is considered a remnant of winter sea ice. When ice melts in 

186 early spring, strong winds mix the water column and stratification is delayed until the water 

187 column begins to warm (Ladd and Stabeno, 2012). When sea-ice melts later, the abatement of 

188 winter storms leads to weaker wind-mixing, allowing meltwater to form a low salinity surface 

189 layer that contributes to stratification (Cokelet, 2016; Ladd and Stabeno, 2012; Stabeno et al., 

190 2012a). Further north where sea-ice persists longer, freshening from ice melt and temperature 

191 contribute to stratification (Ladd and Stabeno, 2012). 
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192 The timing of sea-ice melt affects the spring phytoplankton bloom timing in the mixed 

193 layer. When sea-ice persists until mid-March, a spring bloom of ice-associated phytoplankton 

194 occurs at the surface as the sea-ice thins and melts (Hunt et al., 2011; Sigler et al., 2014). When 

195 ice melts earlier than mid-March, the spring bloom is delayed and concurrent with the onset of 

196 thermal stratification. The spring bloom produces a surface chlorophyll maximum and causes 

197 rapid depletion of nutrients in the mixed layer (Mordy et al., 2012). During summer, primary 

198 production is nutrient-limited in the mixed layer because strong stratification inhibits vertical 

199 infusion of nutrients from the nutrient-rich bottom layer of the middle and outer domain. 

200 However, energetic storms can deepen the mixed layer and replenish nutrients to produce a 

201 phytoplankton bloom that peaks 1–2 weeks after the storm (Sambrotto et al., 1986; Stabeno et 

202 al., 2010). 

203 Spatiotemporal variation in nutrient cycling and replenishment causes variation in 

204 primary production dynamics across the eastern Bering Sea. In the bottom layer over the 

205 northern middle and outer domain, nitrate concentrations are relatively high, and are sufficient to 

206 sustain production throughout the summer if enough light penetrates into the pycnocline 

207 (Stabeno et al., 2019). This production leads to the formation of a pycnocline-associated 

208 subsurface chlorophyll maximum layer that can persist through summer (Stabeno et al., 2012a, 

209 2012b). Summer observations of the subsurface layer are sporadic because there is no regular in-

210 situ monitoring. However, coupled bio-physical models predict the spatiotemporal dynamics of 

211 the layer (Kearney et al., 2020). Towards the inner domain, nitrate concentrations decrease due 

212 to limited onshore advection of bottom water. As such, primary production in the inner domain is 

213 mainly the result of regenerative production (i.e., production supported by the reuptake of 

214 excreted ammonia; Mordy et al., 2017). 
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215 Numerous rivers discharge from the Alaska mainland into the eastern Bering Sea, 

216 supplying freshwater rich with CDOM and suspended sediment. These optically unique water 

217 sources affect water clarity over the eastern Bering Sea shelf (Naik et al., 2013). From October– 

218 May, strong winds and weak cross-shelf density gradients allow advection of fluvial water 

219 sources over the middle and outer shelf (Danielson et al., 2011). During spring and summer, 

220 river discharge is predominantly advected northward alongshore of mainland Alaska by the 

221 Alaska Coastal Current; minimal offshore advection occurs due to a strong cross-shelf density 

222 gradient and weak offshore wind (Danielson et al., 2011). 

223 There is a bottom-associated nepheloid layer over parts of the eastern Bering Sea shelf, 

224 although variation in the nepheloid layer and processes that cause its formation are poorly 

225 characterized due to a lack of monitoring (Feely et al., 1981; Kawana, 1975; McManus and 

226 Smyth, 1970). Generally, nepheloid layers are caused by resuspension of seafloor sediment by 

227 currents generated by wind, tides, geostrophic circulation, internal waves, benthic storms, and 

228 eddies (McCave, 2019). The structure of a nepheloid layer depends on current velocities, 

229 sediment composition, settling rates of particulates, and the density structure of the water 

230 column. 

231 Although changes in the subsurface environment have been poorly characterized, 

232 changes in light transmission dynamics through the upper water column are both a cause and 

233 consequence of ecosystem changes in the eastern Bering Sea. Near-surface waters of the eastern 

234 Bering Sea became bluer from 1935 to 1998, which suggests changes in the ecosystem caused a 

235 decrease in near-surface chlorophyll concentrations (Wernand et al., 2013). In recent warm years 

236 with low sea-ice extent (2014–2016), findings suggest chlorophyll and net primary production 

237 have increased relative to recent cold years (2007–2011) (Lomas et al., 2020). Since 1997, large-
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238 scale blooms of the coccolithophore Emiliania huxleyi have become common in the fall 

239 (August–September) despite being absent from the stratigraphic sediment record in preceding 

240 decades (Harada et al., 2012; Iida et al., 2012; Ladd et al., 2018). This change is thought to be the 

241 result of a climate-mediated shift in the thermohaline structure of the water column and nutrient 

242 that favors the growth of E. huxleyi and may affect zooplankton grazing (Olson and Strom, 2002) 

243 and foraging efficiency for visually foraging predators (Lovvorn et al., 2001). Finally, it has been 

244 suggested that reduction of seasonal sea-ice due to climate change will increase the productivity 

245 of pelagic fish stocks in the eastern Bering Sea by enhancing visual foraging opportunity 

246 (Langbehn and Varpe, 2017). 

247 

248 3. METHODS 

249 3.1 Data sources and processing 

250 3.1.1 Bottom trawl irradiance data 

251 Irradiance, temperature, and salinity data were collected during annual summer (early 

252 June–early August) bottom trawl surveys of the eastern Bering Sea continental shelf conducted 

253 by the Resource Assessment and Conservation Engineering Division of NOAA’s Alaska 

254 Fisheries Science Center. Each year, the bottom trawl survey sampled the same 376 survey 

255 stations arranged on a regularly-spaced 20×20 nmi (37×37 km) grid, with ‘corner stations’ in 

256 some areas (Fig. 1). Sampling was generally conducted near the center of survey grid cells at 

257 approximately the same bottom depth every year. Bottom depths sampled by the survey ranged 

258 from ~20 m along the Alaska mainland to ~180 m along the continental shelf break. Two vessels 

259 were used to conduct surveys each year, with each vessel sampling approximately half of the 

260 stations. Surveys progressed from interior Bristol Bay in the southeast to the outer continental 
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261 shelf in the northwest. Bottom trawl sampling started no earlier than 30 minutes after sunrise and 

262 ended no later than 30 minutes before sunset (Stauffer, 2004). 

263 Bottom trawl surveys collected environmental data using sensors (described below) 

264 attached to the outside of the top panel of the bottom trawl gear (83-112 Eastern trawl). The 

265 sensors were positioned 0.5–2.0 m aft of the headrope of the trawl gear. When deployed in 

266 fishing configuration, the headrope of the bottom trawl gear was ~2.5 m above the seafloor. 

267 Thus, sensors collected data from the sea surface to ~2.5 m above the seafloor during each trawl 

268 deployment (downcast) and retrieval (upcast). Tows were conducted at a target vessel speed of 

269 2.8–3.2 knots (1.44–1.65 m s-1) for 30 minutes, typically resulting in upcasts and downcasts ~1.5 

270 nmi (2.8 km) apart. Vessels were underway during trawl deployment and retrieval, so upcasts 

271 and downcasts were oblique profiles of the water column. 

272 From 2004 to 2018, irradiance measurements were collected using archival tags equipped 

273 with a blue-filtered photodiode (Wildlife Computers TDR-Mk9). Photodiodes are rugged, energy 

274 efficient, have a relatively stable response, and are simple to calibrate, but are less sensitive than 

275 specialized detectors (Mobley, 1994). Archival tags were used because they are relatively 

276 inexpensive, have a low-profile that minimizes drag on trawl gear, and can withstand rough 

277 treatment during deployment. Archival tags were affixed to a triangular, white polyurethane base 

278 plate assembly with shackles at the forward corners (Fig. 2). During bottom trawl survey hauls, 

279 archival tag assemblies were shackled to the trawl gear with the photoelectric cell facing upward 

280 to approximate downwelling irradiance. Shading of the archival tag was not a concern because 

281 the trawl gear was >50 m behind vessels during casts and vessel wake was negligible. From 2006 

282 to 2018, a deck-mounted archival tag was deployed in an unobstructed location atop of the 

283 wheelhouse of each survey vessel, providing surface irradiance measurements. Trawl-mounted 
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289 

284 archival tags sampled at a rate of 1 Hz, while deck-mounted archival tags sampled at 0.1 Hz. 

285 Depths for archival tag irradiance measurements were obtained from a Seabird SBE-39 

286 temperature depth recorder with an internal clock synchronized to the archival tag internal clock 

287 to increase measurement precision and mitigate bias in archival tag depth measurements (Rohan 

288 et al., 2020). 

290 Figure 2. Archival tag affixed to polyurethane base plate assembly with shackles at the forward corners. 

291 The archival tags used an onboard conversion to record irradiance measurements in 

292 relative units that had a maximum integer range of 25–225, corresponding with intensities from 

293 -2 10×10-12 W cm-2 to 5×10-2 W cm . A blue filter on the photoelectric cell causes the archival tag 

294 to have a peak spectral sensitivity at 465 nm, with a 50% response bandwidth of 420–470 nm 

295 (Vacquié-Garcia et al., 2017). The tags have some sensitivity extending to shorter (ultraviolet A) 

296 and longer wavelengths (green–red), as detailed by Rohan et al. (2020). Herein, we symbolically 

297 represent the spectral band of the tag as λtag. 
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298 Archival tag measurements are not direct analogues of measurements from conventional 

299 radiant energy detectors because they are not designed to measure radiant energy with a specific 

300 geometry (e.g. radiance, planar irradiance, diffuse irradiance). Measurements from TDR-Mk101 

301 archival tags are irradiances that geometrically fall between radiance and planar irradiance. The 

302 peak response of the sensor occurs when the main axis of the incident radiance field is 

303 perpendicular to the plane of the sensor (i.e. 90° zenith angle) and decreases at lower incident 

304 angles (Vacquié-Garcia et al., 2017). Yet at low angles, the drop-off in the response is more 

305 extreme than for a cosine corrected planar irradiance detector (Vacquié-Garcia et al., 2017). 

306 Despite their unconventional geometry, archival tag irradiance measurements can be used to 

307 derive attenuation coefficients that closely approximate the downwelling planar attenuation 

308 coefficient from conventional detectors (Nowak, 2019). Further, archival tag irradiance 

309 measurements have been used to calculate vertical attenuation coefficients that allow reasonably 

310 accurate predictions of chlorophyll-a concentrations in marine systems (Bayle et al., 2015; Jaud 

311 et al., 2012; O’Toole et al., 2017, 2014; Teo et al., 2009). Thus, archival tags can be used to 

312 indirectly characterize bio-optical properties. 

313 

314 3.1.2 Irradiance data processing 

315 

316 We developed an algorithm to quality control bottom trawl irradiance data and calculate 

317 two apparent optical properties (AOPs): optical depth, ζ(z, λ), and the downwelling diffuse 

318 -1 attenuation coefficient, Kd(z, λ) m . Optical depth, ζ(z, λ), is a dimensionless ratio that 

319 characterizes the proportion of downwelling irradiance of wavelength λ just beneath the sea 

1 Light sensor components on TDR-Mk10 archival tags are identical to components on TDR-Mk9 archival tags 
(Hamamatsu S2387 photodiode, blue spectral bandpass filter, epoxy casing with a refractive index of 1.56). 
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-1 320 surface that reaches depth z (m). The downwelling diffuse attenuation coefficient, Kd(z, λ) m , 

321 characterizes the rate of decrease of the natural logarithm of the downwelling irradiance of 

322 wavelength λ at depth z. 

323 Initial phases of the design, application, and evaluation of the algorithm are described in 

324 Rohan et al. (2020), who found the algorithm generated reproducible and precise values of ζ(z, 

325 λtag) and Kd(z, λtag) in the eastern Bering Sea. Here, we build on this research by additionally 

326 evaluating whether ζ(z, λtag) and Kd(z, λtag) are consistent with optical properties obtained using 

327 established sampling and data processing methods and applying these optical metrics to evaluate 

328 changes in water clarity in the eastern Bering Sea. Below, we summarize the design of the 

329 algorithm and underlying rationale. 

330 The algorithm first converts archival tag irradiance measurements units to radiometric 

331 units based on a blue-spectrum conversion equation reported by the tag manufacturer: 

332 � = 10���� /� , �1 
-2 333 where y is irradiance in W cm , and x is the integer measurement recorded by the tag. Under 

334 constant irradiance, archival tag measurements vary by two integer units (absolute precision) 

335 and, for a given irradiance level, individual tags differ by approximately two integer units 

336 (Kotwicki et al., 2009; Vacquié-Garcia et al., 2017). Nevertheless, ζ(Z, λtag) and Kd(Z, λtag) are 

337 calculated using relative changes in irradiance so the absolute range of individual tags is 

338 irrelevant so long as tags have a proportionally equal response to changes in downwelling planar 

339 irradiance and values are within the absolute sensitivity range of the tags. 

340 Next, the algorithm calculates the geometric mean irradiance for 2-m depth bins for every 

341 cast. The depth interval for binning (2-m) and use of a geometric mean were chosen based on 
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342 trial-and-error to minimize near-surface fluctuations that were likely caused by wave-induced 

343 refraction and potentially unstable orientation of the archival tag near the surface. 

344 Filters are often used to distinguish signal from noise in irradiance measurement cast data 

345 (e.g. Smith and Baker, 1984) but conventional filter methods (e.g. Kalman filter) were unsuitable 

346 for bottom trawl survey irradiance profiles because they retained data from casts where 

347 irradiance measurements fluctuated abruptly due to probable sampling artifacts (e.g. successive 

348 order-of-magnitude increases and decreases in irradiance). The abrupt shifts may have occurred 

349 due to obstruction of the tag or a change in the orientation of the tag. To address this issue, the 

350 algorithm uses a stepwise point removal filter to remove shallower irradiances that are lower 

351 (darker) than irradiances deeper in the water column, based on the expectation that irradiance 

352 should decrease as depth increases. For example, the stepwise filter omits Ed(1, λtag) if Ed(1, λtag) 

353 < Ed(3, λtag). The stepwise filter removes points until the following condition is satisfied: 

354 �����, ����� ≥ �����, ����� ≥ ⋯ ≥ �������, ����� , 
355 where Ed(zi, λtag) are downwelling irradiance values ordered by depth. Casts where data are 

356 missing or omitted from three consecutive depth bins are flagged and excluded from subsequent 

357 processing. 

358 The archival tag photodiode should be facing upward in order to calculate AOPs that 

359 approximate those based on diffuse downwelling irradiance. Thus, the algorithm employs quality 

360 control checks to detect and exclude casts with improper orientation (Rohan et al. [2020]; 

361 Supplementary Material: Detecting archival tag orientation errors). 

362 Irradiance measurements from the 1-m depth bin are missing or excluded during quality 

363 control checks for some casts, which prevents subsequent calculation of ζ(z, λtag). Therefore, the 

364 algorithm uses a linear extrapolation to estimate irradiance for the 1-m depth bin when missing. 
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365 The extrapolation method explains 96% of the variation in log-transformed irradiance for the 1-

366 m depth bin (Rohan et al., 2020). 

367 The algorithm is used to calculate optical depth ζ(z, λtag), and the diffuse irradiance 

368 attenuation coefficient, Kd(z, λtag), from casts that pass quality control checks. From the Beer-

369 Lambert equation, downwelling irradiance at depth z, Ed(z, λ), is approximately related to 

370 downwelling irradiance just below the surface, ���0�, � , as: 

371 ����, � = ���0�, � ����� �→ ,! , �2 
372 where Kd(0-→z, λ) (m-1) is the downwelling diffuse attenuation coefficient between just below 

373 the sea surface and depth Z (Gordon, 1989). Optical depth, ζ(z,λ), is the product of depth and 

374 Kd(0-→z, λ): 

375 $��, � = %��0� → �, � � = ln����0�, � � − ln�����, � � . �3 
376 Larger values of ζ(z,λ) correspond with darker conditions. 

377 Because Ed(1) is the shallowest value for each cast, the algorithm calculates ζ(z, λtag) as: 

378 $��, ����� = ln +���1, �����, − ln +����, �����, . �4 
379 Through an infinitesimally thin slice of water at depth z, the downwelling diffuse 

380 attenuation coefficient, Kd(z, λ), is defined as: 

1 .����, � 
381 %���, � = − . �5����, � .� 
382 In natural waters, Kd(z, λ) varies with depth due to variation in optically active constituents (e.g. 

383 chlorophyll-a, CDOM). Because in-situ radiometric measurements alone do not provide a basis 

384 to analytically calculate Kd(z, λ), a numerical approximation is typically used to estimate Kd(z, λ). 

385 Our approach to numerical approximation of Kd(z, λtag) is described in the Supplementary 

386 Material (Numerical approximation of Kd(z, λtag)) and Rohan et al. (2020). 
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387 We used ζ(z, λtag) to estimate the following proxies of near-surface water clarity: the 

388 depths where irradiance was reduced to 10% (Z10%) and 1% (Z1%) of irradiance for the 1-m depth 

389 bin. We calculated Z1% and Z10%, by linearly interpolating ζ(z, λtag) between the depth bins that 

390 were immediately above and below the target optical depths. To allow for a qualitative 

391 evaluation of the extent of the bottom nepheloid layer, we also used Kd(z, λtag) to calculate a 

392 nepheloid layer index (NLI), which we define as: 

77777777777777 
393 012 = 100 ∗ 4%���56�, ���� − %���, �����8 �677777777777777%���, ����� 

77777777777777
394 where Kd(zbot, λtag) is the mean Kd(z, λtag) for the bottom five meters of a cast and %���, �����is 

395 the mean for the entire cast. 

396 

397 3.1.3 CTD data processing 

398 

399 From 2008 to 2017, temperature, salinity, and depth data were collected using a CTD 

400 (Falmouth Scientific Instruments NXIC CTD or Teledyne RD Instruments Citadel CTD-NV). 

401 CTDs sampled at a rate of 15 Hz. CTD data from each cast were binned to 1-m resolution and 

-3)402 used to derive profiles of temperature (°C), salinity (PSS-78), and density anomaly, σt (kg m 

403 (Cokelet, 2016). For each profile, we calculated mixed layer depth (MLD) as the shallowest 

404 depth where the density anomaly first exceeded the average value from the upper 5 m by 0.1 kg 

405 m-3 and bottom layer depth (BLD) as the deepest depth where the density anomaly first exceeded 

406 the average value from the bottom 5 m by 0.1 kg m-3 (Cokelet, 2016; Danielson et al., 2011). If 

407 the density anomaly did not exceed the threshold, we did not calculate a bottom layer depth, and 

408 considered the mixed layer depth to be equal to the bottom depth. We also calculated the density 

19 



 

 

                

                      

               

  

   

    

  

              

               

           

                   

               

              

                 

               

              

                

               

                

           

               

          

� � �  

409 difference between the mixed layer and bottom layer, Δσt, which we defined as the difference 

410 between σt average for the upper 5 m of the water column and the density at either 30 m below 

411 the mixed layer depth, or the deepest measurement in the water column (Cokelet, 2016). 

412 

413 3.2 Analysis 

414 3.2.1 Satellite validation 

415 

416 We evaluated whether Kd(z, λtag) were reliable (accurate and precise) by comparing data 

417 from Kd(z, λtag) profiles to the European Space Agency’s (ESA) Ocean Colour Climate Change 

418 Initiative (OC-CCI Version 5.0) daily, 4-km resolution downwelling diffuse attenuation 

419 coefficients at 490 nm, Kd(zs, 490) where zs is the near-surface portion of the water column that is 

420 ‘visible’ to the satellite. OC-CCI Kd(zs, 490) is a multi-sensor satellite data product (NASA, 

421 NOAA, ESA, Copernicus) that is derived from inherent optical properties calculated using the 

422 Quasi-Analytical Algorithm (Lee et al., 2002; Lee et al., 2005). For our evaluation, we found all 

423 same-day spatial match-ups between OC-CCI Kd(zs, 490) and the final Kd(z, λtag) profiles. We 

424 first excluded upcast profiles to avoid pseudoreplication in our evaluation. We also excluded 

425 downcasts where Ed(1, λtag) was estimated by the algorithm. We followed Zaneveld et al. (2005) 

426 to calculate surface-weighted values of Kd(zs, λtag) from the remaining Kd(z, λtag) profiles. 

427 To evaluate the reliability of the tag-based data products, we fit a linear regression model 

428 between log10-transformed Kd(zs, λtag) (predictor) and log10-transformed satellite Kd(zs, 490) 

429 (response), then used the model to calculate four performance metrics : the coefficient of 

430 determination (r2), root mean square log error (RMSLE), 

F D431 RMSLE = 0�� ? @�ln %���A, 490 C − ln %���A, 490 E�� , �7 
EG� 

20 



 

 

     

� �� �  

      

 
�  
� �  

                 

                   

              

               

                

              

                

  

    

  

              

               

              

             

    

                

               

                

432 mean relative error (MRE), 

F D100 I%���A, 490 C − %���A, 490 EI 
433 MRE = 0 ? %���A, 490 E , �8 

EG� 
434 and mean absolute error (MAE), 

W N D OPLQ ��� R,ST VI435 MAE = 10�F�L ∑VXLI OPLQ ��� R,ST U�N �. �9 
436 We consider RMSLE, MRE, and MAE to be more informative than r2 because they are less 

437 sensitive to outliers and the dynamic range of samples in the data set (Seegers et al., 2018). 

438 We used relative error from the regression to evaluate whether there were detectable 

439 biases caused by obtaining measurements across a broad range of solar zenith angles (30°–90°). 

440 Solar zenith angle can cause 5–30% variation in Kd near the surface depending on wavelength 

441 and optical properties of active constituents in the water column because measurements are 

442 influenced by the angular distribution of the radiance field (Baker and Smith, 1979; Kirk, 2011). 

443 

444 3.2.2 Regional analysis 

445 

446 We conducted analyses at regional and fine spatial scales to evaluate whether regional 

447 patterns and trends were representative of finer-scale variability and vice versa, and to generate 

448 hypotheses about mechanisms responsible for variation in AOPs. For the regional analyses, we 

449 characterized region-wide patterns and trends in AOPs and associations between AOPs and 

450 physical covariates. 

451 Because depth has often been used as a proxy for ambient irradiance in visual ecology, 

452 we evaluated whether depth was a reasonable predictor of subsurface irradiance in the eastern 

453 Bering Sea. To do so, we fit a generalized additive model (GAM) between maximum sampling 
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454 depth for a cast, zmax (predictor), and near-bottom optical depth, ζ(zmax) (response) and calculated 

455 the deviance explained by the model. We focused on bottom depth because it is most relevant to 

456 environmental conditions for highly abundant bottom-dwelling species in the eastern Bering Sea. 

457 We tested for regional temporal trends in ζ(zmax, λtag), Z10%, and Z1% using linear-mixed 

458 effects models where ζ(zmax, λtag), Z10%, and Z1% were response variables, year was a continuous 

459 fixed effect, and survey station was a random effect. Because observations from a single haul are 

460 not independent samples, we weighted casts in the models by the number of casts from a station 

461 in a single year that passed quality control checks. 

462 To evaluate if region-wide variation in the level of near-bottom radiation was explained 

463 by variation in near-surface water clarity and if water clarity was related to physical covariates 

464 (mixed layer depth, Δσt), we performed linear regressions on indices of ζ(zmax, λtag), Z10%, Z1%, 

465 mixed layer depth, and Δσt. The indices were calculated from the annual interpolated raster 

466 surfaces (Supplementary Material: Spatial interpolation to generate rasters) as: 

F 
0�� ? ��YE� − ẐE 

467 2� = , �4\̂E]G� 
468 where N is the number of 5 km x 5 km pixels in the interpolated surface (17,765), It is the 

469 anomaly index for year t, �YE� is the estimated value of ζ(zmax, λtag), Z10%, or Z1% for pixel i, ẐE is 

470 the mean for the pixel, and \̂i is the standard deviation for the pixel. This approach was used to 

471 calculate anomalies instead of directly using observations because data were missing from 

472 different combinations of stations each year. We then fit linear regression models between 

473 combinations of anomaly indices to evaluate whether shelf-wide variation in near-bottom 

474 irradiance was explained by variation in near-surface water clarity (i.e., Z10%, Z1%), whether 

475 variation in near-surface water clarity and near-bottom irradiance were explained by variation in 
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476 physical covariates (mixed layer depth, Δσt ), and whether there was covariation between 

477 physical covariates. 

478 

479 3.2.3 Fine-scale analysis 

480 For the fine-scale analysis, we characterized patterns and trends using interpolated 5 × 5 

481 km resolution raster surfaces of environmental variables (ζ(zmax, λtag), Z10%, Z1%, mixed layer 

482 depth, Δσt), interpolated transects of environmental variables (Rows C, G, P, S; Fig. 1), and 

483 vertical profiles from individual stations. We analyzed fine-scale areal patterns in ζ(zmax, λtag), 

484 Z10%, Z1%, mixed layer depth, and the nepheloid layer index by calculating pixel-wise summary 

485 statistics from annual raster surfaces. To evaluate whether the density structure of the water 

486 column was related to fine-scale variation in irradiance and water clarity (indirectly through 

487 processes that affect optically active constituents), we conducted regressions between annual 

488 raster surfaces of ζ(zmax, λtag), Z10%, Z1%, mixed layer depth, and Δσt. We analyzed fine-scale 

489 vertical patterns by visually inspecting cross-sections of Kd(z, λtag), mixed layer depth, Z10% and 

490 Z1% that were interpolated along survey rows. 

491 To test for fine-scale temporal trends, we conducted pixel-wise linear regressions on 

492 annual rasters of ζ(zmax, λtag), Z10%, Z1%, using year as a predictor. In an effort to identify potential 

493 causes of change, we then examined vertical profiles of Kd(z, λtag) from areas where the slope of 

494 the relationship was significantly different from zero at the p < 0.05 level, based on a t-test. 

495 

496 3.2.4 Comparison with Bering10K ROMS model 

497 
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498 We compared AOP patterns to predicted patterns of chlorophyll and detritus from a 

499 coupled bio-physical regional ocean model (Bering10K-BESTNPZ) in order to qualitatively 

500 validate our AOPs and evaluate whether patterns of Kd(z, λtag) were associated with predicted 

501 patterns of chlorophyll and detritus. Our regional ocean model uses the Regional Ocean 

502 Modeling System (ROMS), a free-surface, primitive equation hydrographic model (Haidvogel et 

503 al., 2008; Shchepetkin and McWilliams, 2005). The Bering Sea implementation, referred to as 

504 the Bering10K domain, spans the Bering Sea and northern Gulf of Alaska with 10-km horizontal 

505 resolution and 30 terrain-following depth levels. The physical model is coupled to the Bering 

506 Ecosystem Study nutrient-phytoplankton-zooplankton (BESTNPZ) biogeochemical model, 

507 which simulates lower trophic level dynamics spanning the pelagic, benthic, and ice 

508 environments (Gibson and Spitz, 2011; Kearney et al., 2020). 

509 In this analysis, we use output from the hindcast simulation of the Bering10K-BESTNPZ 

510 model. The hindcast simulation covers the period of 1970 to the present, using surface and lateral 

511 boundary forcing from the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010; 

512 1995–March 2011) and the Climate Forecast System Operational Analysis (CFSv2-OA) (April 

513 2011–present). Further details of this model configuration, as well as analysis of the simulation’s 

514 biophysical skill, can be found in Kearney et al. (2020). For this study, we examine simulated 

515 chlorophyll-a across the two phytoplankton size classes (large and small), as well as the 

516 concentration of detrital matter in the water column, to elucidate possible mechanisms 

517 influencing the observed patterns in Kd(z, λtag). 

518 

519 4. RESULTS 

520 
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521 4.1 Satellite analysis 

522 Performance metrics from the regression between Kd(zs, λtag) and OC-CCI Kd(zs, 490) 

523 demonstrate that our data collection method and algorithm provide a reliable measure of near-

524 surface Kd based on the strong positive correlation and 23.3% mean relative error (Fig. 3A; 

525 Table 1). There were no clear spatial patterns in prediction error, based on a visual inspection of 

526 relative error (Fig. 3B). Contrary to expectation, we did not detect a systematic bias in 

527 measurements due to solar zenith angles (32°–90°), based on residuals from the linear regression 

528 model (Fig. S7). 

529 

530 

531 Figure 3. Surface-weighted archival tag Kd(zs, λtag) versus OC-CCI Kd(zs, 490). (A) Linear regression model fit 

532 between log10-transformed Kd(zs, λtag) and log-transformed OC-CCI Kd(zs, 490), shown by the solid blue line and 

533 shaded area (mean ± 2 standard errors); (B) Relative error (%) of regression fit over space, based on an absolute 

534 scale. See Table 1 for regression performance metrics. 

535 Table 1. Performance metrics and slope for the regression between archival tag Kd(zs, λtag) and OC-CCI Kd(zs, 

536 490). Performance metrics are the coefficient of determination (r2), mean relative error (MRE), root mean square log 

25 



 

 

                   

  

 Metric  Value 
2 r   0.49 

  MRE (%)  23.3 

 RMSLE  0.227 

 MAE  1.254 

 Slope  0.72 

 n  351 

  

      

      

              

                 

                 

                  

              

                 

             

              

                

               

         

  

537 error (RMSLE), and mean absolute error (MAE). Also shown are the fitted mean regression slopes and sample sizes 

538 (n). 

539 

540 4.2 Regional and fine-scale analyses 

541 4.2.1 Regional patterns and trends 

542 At a regional scale, depth was not a reliable predictor of near-bottom downwelling 

543 irradiance, as the GAM between zmax and ζ(zmax, λtag) explained only 53.0% of total deviance (Fig. 

544 4). There was a positive relationship between zmax and ζ(zmax, λtag) at depths <80 m. The 

545 relationship was relatively flat at depths ≥ 80 m, which suggests bottom depth was not a reliable 

546 predictor of irradiance at these depths. There was considerable interannual variation in ζ(zmax, 

547 λtag) as shown by the range of ζ(zmax, λtag) at individual stations during 2004–2018 (Fig. 4). 

548 Ranges of ζ(zmax, λtag) between 2004–2018 were 2.57–12.72 (median: 5.52), corresponding with 

549 1.1–5.5 (median: 2.4) orders of magnitude of variation in near-bottom downwelling irradiance at 

550 individual stations (Fig. 4). From 2004 to 2018, 22.1% of stations (83/376) had variation in 

551 ζ(zmax, λtag) corresponding with greater than three orders of magnitude of variation in near-bottom 

552 downelling irradiance (range of ζ(zmax, λtag) > 6.9). 

553 
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554 

555 Figure 4. Maximum profile depth (zmax, λtag) versus near-bottom optical depth ζ(zmax,, λtag) from 2004–2018. Points 

556 denote station median, vertical and horizontal bars denote the range. Generalized additive model fit shown by solid 

557 blue line and shaded area (mean ± 2 std. err.). GAM deviance explained: 53.0%. 

558 Lower near-surface water clarity was associated with a darker near-bottom environment 

559 as shown by the strong negative correlation between the Z10% and ζ(zmax, λtag) anomalies during 

560 2004–2018 (r[15] = -0.79; p = 0.00042; Fig. 5A). A deeper mixed layer was also associated with 

561 weaker stratification, as shown by the strong negative correlation between mixed layer depth and 

562 density difference anomalies during 2008–2017 (r[10] = -0.81; p = 0.0044; Fig 5B). However, 

563 there was no evidence that variation in near-surface water clarity was linked to variation in the 

564 density structure of the water column, as density anomalies were not correlated with Z10% 

565 anomalies (r[10] = 0.09; p = 0.80; Fig. 5C) or near-bottom optical depth anomalies (r[10] = -0.32; p 

566 = 0.37), and mixed layer depth anomalies were not correlated with Z10% anomalies (r[10] = -0.10; 

567 p = 0.78) or near-bottom optical depth anomalies (r[10] = 0.03; p = 0.94). 

568 
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 Response  Slope (year-1)  

 Z10%   -0.14 ± 0.03  
 Z1%     -0.21 ± 0.05 

  ζ(zmax, λtag)   0.035 ± 0.008  
  

  

      

  

569 

570 Figure 5. Relationships between anomaly indices for (A) Z10% versus ζ(zmax, λtag) from 2004–2018, (B) mixed layer 

571 depth versus Δσt from 2008–2017, (C) Δσt versus Z10% from 2008–2017. Solid blue line and shading denote the 

572 linear regression fitted-mean ± two standard errors. The Pearson correlation coefficient (r) and p-value are shown on 

573 each panel. 

574 Near-surface water clarity decreased and the near-bottom environment grew darker from 

575 2004–2018, based on the effect of year in the linear mixed effects models (Table 2). On average, 

576 ζ(zmax, λtag) increased by 0.035 ± 0.008 yr-1 (mean ± 2 std. err.), Z10% decreased by 0.14 ± 0.03 m 

577 -1 -1 yr , and Z1% decreased by 0.21 ± 0.05 m yr . 

578 

579 Table 2. Estimated slopes (mean ± 2 standard errors) of linear mixed effects models between year (predictor) and 

580 Z10%, Z1%, and ζ(zmax, λtag), where stations were included as a random effect. 

581 

582 

583 4.2.2 Fine-scale patterns and trends 

584 
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585 The reason why depth alone was not a reliable predictor of near-bottom optical depth 

586 (Fig. 4) is illustrated by spatial patterns in near-bottom optical depth (Fig. 6A). Although ζ(zmax, 

587 λtag) generally increased with depth, near-bottom conditions were darker inshore of the 

588 continental shelf break in the north and in the middle domain in the southeast, as shown by areas 

589 of high average ζ(zmax, λtag) during 2004–2018 (Fig. 6A). Over the northwest middle and outer 

590 shelf, near-surface water clarity was high as shown by the 25–30 m deep Z10% (Fig. 6B), but 

591 near-bottom conditions were dark, as shown by the high ζ(zmax, λtag). In part, this can be 

592 explained by a near-bottom nepheloid layer in the northwest (Fig. 6C). However, the nepheloid 

593 layer alone did not explain the disconnect between Z10% and ζ(zmax, λtag) in the northwest, as will 

594 be shown later. 

595 In the northern middle and outer domain, Z10% was deeper than the mixed layer depth 

596 during 2008–2017 due to high near-surface water clarity and a shallow mixed layer (Figs. 6E). 

597 This is notable because the mixed layer of the eastern Bering Sea is nutrient-depleted after the 

598 spring bloom and onset of stratification, but nutrient concentrations below the mixed layer over 

599 the middle and outer domain are sufficient to sustain primary production during summer if there 

600 is sufficient light (Mordy et al., 2012; Stabeno et al., 2012a). By contrast, Z10% was shallower 

601 than the mixed layer over the southern middle and outer domain (Figs. 6E). In the inner domain, 

602 Z10% was shallower than the mixed layer of the typically fully mixed water column. The inner 

603 domain is nutrient-depleted after the spring bloom, however, so light is not expected to be the 

604 limiting factor for primary production (Kachel et al., 2002; Mordy et al., 2017). 
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605 

606 Figure 6. Means of (A) near-bottom optical depth, ζ(zmax, λtag), for 2004–2018, (B) depth of the 10% irradiance, 

607 Z10%, for 2004–2018, (C) nepheloid layer index (NLI) for 2004–2018, (D) mixed layer depth for 2008–2017, (E) 

608 depth of Z10% minus mixed layer depth for 2008–2017. Text labels in panel A denote the Inner (ID), Middle (MD), 

609 and Outer (OD) domains. 

610 Measures of near-surface water clarity, Z10% and Z1%, were strongly correlated over most 

611 of the eastern Bering Sea shelf during 2004–2018 (Fig. 7A). However, over the northern middle 

612 and outer domains, Z10% and Z1% were weakly correlated or uncorrelated and Z10% and ζ(zmax, λtag) 

613 were uncorrelated, indicating that near-surface water clarity was not the primary driver of 

614 variation in subsurface light (Fig. 7B). Further south and in the inner domain, Z10% was strongly 

615 correlated with ζ(zmax, λtag), indicating that variation in near-surface water clarity was closely 

616 linked to variation in light transmission through the full water column (Fig. 7B). 

617 
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618 

619 Figure 7. Pearson correlation coefficients (r) for (A) Z10% versus Z1% for 2004–2018; (B) Z10% versus ζ(zmax, λtag) for 

620 2004–2018; (C) Δσt versus mixed-layer depth for 2007–2017; (D) Δσt versus Z10% for 2007–2017. Yellow contour 

621 lines denote the areas with a non-zero correlation at the α = 0.05 significance level. 

622 

623 In the north (>~58° N), bottom and midwater light attenuating layers played an important 

624 role in regulating light transmission to the seafloor. This is shown by profiles of Kd(z, λtag) along 

625 rows P and S during 2011 (Figs. 8A,E) and 2017 (Figs. 8B,F). The thickness of the pycnocline 

626 decreased towards the inner domain as bottom depth decreased. In the northern middle and outer 

627 domain, mixed layer depth was often shallower than Z10% and there was a recurrent mid-water 

628 peak in Kd(z, λtag) associated with the pycnocline or bottom of the mixed layer. Mid-water peaks 
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629 in Kd(z, λtag) were likely caused by a subsurface chlorophyll maximum. In the bottom layer of the 

630 outer and middle domain, Kd(z, λtag)was elevated in a 15–50 m thick bottom-associated nepheloid 

631 layer. Together, midwater and bottom layers caused dark near-bottom conditions in the middle 

632 and outer domain of the northwest (Fig. 6A) despite low Kd(z, λtag) in the mixed layer. 

633 

634 Figure 8. Cross-shelf profiles of optical and physical variables for rows S and P during 2011 and 2017. Panels show: 

635 (A, B, E, F) the vertical attenuation coefficient (color), mixed layer depth (MLD; solid black line), bottom layer 

636 depth (BLD; dashed black line), Z10% (solid white line); (C, D, G, H) salinity (color) and temperature (white lines). 

637 Ticks along the horizontal axis denote sample locations for optical and physical variables that were obtained using 
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638 archival tags and CTDs, respectively. Row S was sampled from 7/18–7/21 in 2011 and 7/23–7/30 in 2017; row P 

639 was sampled from 7/3–7/23 in 2011 and 6/30–7/29 in 2017. 

640 Vertical profiles of Kd(z, λtag) were more variable in the south, as shown by profiles along 

641 rows C and G during 2011 and 2017 (Figs. 9A, B, E, F). Over the middle domain, the vertical 

642 structure in Kd(z, λtag) was characterized by fine-scale (≤ 20 nmi) variability during many years, 

643 and near-surface water clarity played an important role in regulating light transmission, as shown 

644 by the row G cross-section during 2011 (Fig. 9A). Unlike in the north, there was no consistent 

645 bottom-associated nepheloid layer over the middle and outer domain in the south. Patches of 

646 elevated near-bottom Kd(z, λtag) values occurred sporadically, such as along row C at ~165.0 °W 

647 in 2011 (Fig. 9E) and at ~166.5 °W and 164.0 °W in 2017 (Fig. 9F). Due to variations in near-

648 surface water clarity and mixed layer depth, the position of Z10% relative to mixed layer depth 

649 was highly variable in the south, as shown by Z10% being shallower than the mixed layer over the 

650 middle domain of row G during 2011 and much deeper during 2017 (Fig. 9A, B). Over the 

651 southern middle domain, there was often a sharp pycnocline between the mixed layer and bottom 

652 layer and, in contrast to the north, there was no regular peak in Kd(z, λtag) associated with the 

653 pycnocline—midwater peaks in Kd(z, λtag) only occurred sporadically. However, a sharp 

654 pycnocline was not always present in the south, potentially because the pycnocline was still 

655 forming in early summer (e.g. Fig. 9G). 
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656 

657 Figure 9. Cross-shelf profiles of optical and physical water column structure for rows G and C during 2011 and 

658 2017. Panels show: (A, B, E, F) the vertical attenuation coefficient (color), mixed layer depth (MLD; solid black 

659 line), bottom layer depth (BLD; dashed black line), Z10% (solid white line); (C, D, G, H,) salinity (color) and 

660 temperature (white lines). Ticks along the horizontal axis denote sample locations for optical and physical variables 

661 that were obtained using archival tags and CTDs, respectively. Row C was sampled from 6/10–7/14 in 2011 and 

662 6/10–7/1 in 2017; row G was sampled from 6/5–7/15 in 2011 and 6/4–7/18 in 2017. 

663 Trends in ζ(zmax, λtag), Z10%, and Z1% were patchy at fine-spatial scales and, in some areas, 

664 were the opposite of the regional trends of increasing ζ(zmax, λtag) and decreasing Z10%, and Z1% 
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665 during 2004–2018 (Figs. 10A–C). Decreasing Z10% was most prominent along the 50 m isobath 

666 north of 57 °N, in the interior of Bristol Bay, and inshore of the 50 m isobath south of Nunivak 

667 Island (Fig. 10A). Decreasing Z1% occurred over the middle shelf and outer shelf in areas 

668 centered at ~58 °N and along the 50 m isobaths in Bristol Bay. Increases in ζ(zmax, λtag) occurred 

669 in the same areas as the decreases in Z1%, while a significant decrease in ζ(zmax, λtag) occurred 

670 over the northern outer shelf at ~ 61 °N (Fig. 10C). 

671 In areas where there were significant changes in ζ(zmax, λtag), Z10%, and Z1%, cumulative 

672 moving averages of Kd(z, λtag) at representative stations provide insight into how changes in the 

673 vertical structure of Kd(z, λtag) drove temporal trends. In the area around station K-03 (58° 18’ N, 

674 166° 33’ W), a general increase in Kd(z, λtag) throughout the water column (Fig. 10D) led to the 

675 decrease in Z10% and Z1% and an increase in ζ(zmax, λtag), although the trend was not monotonic 

676 (Figs. 10A–C). In the area around station I-25 (57° 40’ N, 172° 48’ W), an increase in Kd(z, λtag) 

677 near the surface and bottom (Fig. 10D) led to a decrease in Z10% and Z1% and an increase in 

678 ζ(zmax, λtag) (Figs. 10A–C). Around Station S-30 (61° 00’ N, 176° 58’W), a decrease in Kd(z, λtag) 

679 at depths >40 m (Fig. 10D) led to a decrease in ζ(zmax, λtag) (Figs. 10A–C). 

680 
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681 

682 Figure 10. Total change in (A) Z10%, (B) Z1%, (C) ζ(Zmax, λtag) between 2004 and 2018 based on the mean of pixel-

683 wise linear regression on annual raster surfaces; red contours denote areas where the regression slope was non-zero 

684 at the α = 0.05 level and points denote locations of stations for Panel D. Panel D shows the cumulative moving 

685 average of the vertical attenuation coefficient for stations K-03, I-25, and S-30 from 2004–2018, where line color 

686 denotes the year of the average. 

687 

688 4.3 Comparison with Bering10K model 

689 The hypothesis that Kd(z, λtag) in the surface and mid-water was strongly influenced by 

690 variation in primary productivity is supported by predictions from the Bering10K-BESTNPZ 

691 model. Along rows C, G, P and S observed patterns in Kd(z, λtag) were qualitatively similar to 

692 modeled June–July chlorophyll-a for surface and mid-water depths (Figs. 8–9, 11). Throughout 

693 the eastern Bering Sea, model chlorophyll-a was higher during 2011 than 2017 (Figs 11, 12A– 

694 B), mainly due to effects of temperature on model dynamics. This pattern comports with 
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695 observed differences in near-surface Kd(z, λtag) on the southern shelf between 2011 and 2017, as 

696 shown for rows C and G (Figs. 8–9). Further north, interannual variation in midwater Kd(z, λtag) 

697 was not clearly associated with modeled interannual variation chlorophyll-a (Figs. 8, 11). The 

698 model did not provide a mechanistic explanation for the bottom associated nepheloid layer, as 

699 chlorophyll-a and detritus were not elevated near the bottom over the middle and outer domain. 

700 The model predicted an onshore-offshore gradient in whole column detritus (Fig. 12C–D). Areal 

701 patterns of depth-integrated chlorophyll and detritus (Fig. 12) did not match the footprint of the 

702 bottom associated nepheloid layer (Fig. 6C). 
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703 

704 -3)Figure 11. Modeled (Bering10K-BESTNPZ) concentrations of chlorophyll-a (mg m-3) and detrital carbon (mg m

705 along rows C, G, P, and S during June–July of 2011 and 2017. Fill color shows chlorophyll-a, contour lines show 

706 detrital carbon. Bottom depth follows trawl survey bathymetry rather than model bathymetry. 
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707 

708 Figure 12. Modeled (Bering10K-BESTNPZ) depth-integrated chlorophyll-a (g m-2) and detrital carbon (g m-2) in the 

709 eastern Bering Sea during June–July 2011 and 2017. Black bathymetric contour lines show presumed survey 

710 bathymetry, grey lines show bathymetry used in the Bering10K-BESTNPZ model. 

711 

712 

713 5. DISCUSSION 

714 5.1 Overview 

715 We characterized variation in subsurface water clarity in the eastern Bering Sea shelf at 

716 an unprecedented spatial resolution and annual frequency using AOPs derived from bottom trawl 

717 irradiance measurements. Based on performance metrics for the regression between archival tag 

718 Kd(zs, λtag) and satellite Kd(zs, 490), we conclude the sampling method and algorithm provided a 

719 reliable characterization of in situ conditions. At a regional scale, we found the summertime 

720 near-bottom environment of the eastern Bering Sea grew darker and near-surface water clarity 
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721 decreased from 2004 to 2018, as shown by the region-scale linear mixed effects models. Lower 

722 near-surface water clarity was associated with darker near-bottom conditions. At finer scales, 

723 however, local trends often differed from regional trends and changes in near-surface water 

724 clarity were not always associated with variation in irradiance deeper in the water column. These 

725 findings underscore that the eastern Bering Sea contains a complex mosaic of optical habitat and 

726 that subsurface dynamics play a key role in regulating optical conditions. Across the optical 

727 habitat mosaic, there are likely to be differences in primary productivity, trophic transfer 

728 efficiency, and community structure due to variation in light-dependent processes such as 

729 photosynthesis and visual foraging. 

730 

731 5.2 Patterns and trends 

732 Over the northern middle and outer shelf, the recurrent peak in attenuation around the 

733 pycnocline was likely caused by a subsurface chlorophyll maximum, as predicted by the 

734 Bering10K-BESTNPZ model and frequently observed by in situ sampling (Stabeno et al., 

735 2012b). Over the northern middle and outer shelf, high near-surface water clarity allows light to 

736 penetrate through the mixed layer and into the nutrient-rich waters below, where primary 

737 production can continue throughout the summer (Mordy et al., 2012; Stabeno et al., 2012a, 

738 2012b). However, substances other than chlorophyll-a may also affect light transmission through 

739 the pycnocline, as concentrations of non-algal particulate and CDOM can be higher in subsurface 

740 layers than in the mixed layer (Naik et al., 2013). 

741 Although patterns of Kd(z, λtag) generally matched spatial patterns of total chlorophyll 

742 predicted by the Bering10K-BESTNPZ model in the surface and midwater, they did not match 

743 modeled interannual variation in subsurface total chlorophyll in the north and the model did not 
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744 provide a mechanistic explanation for the bottom-associated nepheloid layer. The mismatch 

745 between observed Kd(z, λtag) and modeled patterns of interannual variation in subsurface 

746 chlorophyll-a in the northern region may derive from the BESTNPZ model’s inability to fully 

747 simulate the under-ice and ice-edge phytoplankton blooms and sinking dynamics that occur in 

748 this region (Kearney et al., 2020). The absence of a nepheloid layer may be due to the fact that 

749 the Bering10K-BESTNPZ model does not include sediment resuspension dynamics. It may also 

750 point to model deficiencies related to sinking, remineralization, and resuspension of organic 

751 matter in this region. Overall, dynamics of the Bering10K-BESTNPZ model are poorly 

752 constrained by in-situ observations due to a paucity of observations, especially with respect to 

753 spatial variation in the north. The tag-based AOP data set or future trawl-based AOP data may 

754 help to improve the Bering10K-BESTNPZ model by informing efforts to constrain or refine 

755 processes in the model. 

756 We hypothesize that the bottom-associated nepheloid layer over the northern middle and 

757 outer shelf is maintained by tidally-driven resuspension of sediment. Nepheloid layers form 

758 when current velocities along the seafloor generate enough shear stress to resuspend substrate. 

759 The shear stress needed to resuspend sediment depends on the composition of the sediment. 

760 Flow velocities ≥7 cm s-1 generate enough shear stress to resuspend phytodetrital aggregates 

761 -1 (Lampitt, 1985; McCave, 2019), 10–15 cm s can resuspend loosely consolidated silt, and 25–30 

762 -1 -1 cm s can resuspend sand (Gardner, 1989). Mean geostrophic flow velocities are < 5 cm s over 

763 most of the eastern Bering Sea shelf (Cokelet, 2016; Stabeno et al., 2016), insufficient to 

764 resuspend sediment. However, diurnal and semidiurnal tides in the eastern Bering Sea generate 

765 -1 10–30 cm s-1 currents over much of the shelf and currents >70 cm s can occur in some areas 

766 (Coachman, 1986; Stabeno et al., 2008). These current speeds would be sufficient to resuspend 
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767 phytoplankton, detritus, and the predominantly mud and sand substrate of the eastern Bering Sea 

768 shelf, although tidal currents are weaker further north (Stabeno et al., 2012b). If it is caused by 

769 tidal currents, variation in the nepheloid layer would be caused by variation in accumulated 

770 phytoplankton and detritus in the bottom layer, tidal amplitude, composition of surface sediment, 

771 and rates of consumption by benthic consumers (Lampitt, 1985). Further research is needed to 

772 clarify what causes the nepheloid layer, what effect the nepheloid layer has on ecological 

773 processes near the seafloor, and why the nepheloid layer is most prominent in the north. 

774 Contact between trawl gear and the seafloor generates sediment clouds, but is unlikely to 

775 explain the bottom-associated nepheloid layer for several reasons. First, review of hundreds of 

776 hours of underwater video footage of the 83-112 bottom-trawl gear in motion in the eastern 

777 Bering Sea shows the archival tag location (top panel, 0.5–1 m behind headrope, ~2.5 m off-

778 bottom) is well outside of the mudcloud (L.L. Britt and S. Kotwicki, personal observation). 

779 Second, the nepheloid layer typically extends tens of meters off bottom, well beyond where a 

780 mud cloud would likely begin. Third, the grain size of seafloor sediment generally decreases 

781 from onshore-to-offshore on the eastern Bering Sea shelf (Richwine et al. 2018), which suggests 

782 mudclouds would be more prevalent in deeper areas. However, the nepheloid layer is absent or 

783 less pronounced in deep areas and patterns of sediment size (Richwine et al. 2018) do not align 

784 with the footprint of nepheloid layer. Thus, the nepheloid layer is unlikely to be an artifact of our 

785 sampling method. 

786 

787 5.3 Implications for fisheries stock assessment and management 

788 The level of variation in near-bottom optical depth is likely sufficient to cause variation 

789 in the catchability (i.e., capture efficiency) of bottom trawl surveys. At many survey stations, 
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790 variation in ζ(zmax, λtag) corresponded with multiple-order-of magnitude variation in downwelling 

791 irradiance that would be expected to cause variation in capture efficiency. A 3–4 order-of-

792 magnitude decrease in background irradiance can cause a complete cessation of fish visual 

793 reactions to bottom trawl gear (Blaxter and Parrish, 1966, 1964; Cui et al., 1991; Glass and 

794 Wardle, 1989) and variation in downwelling irradiance during bottom trawl surveys affects catch 

795 rates of walleye pollock in the eastern Bering Sea (Kotwicki et al., 2018, 2009). Changes in 

796 catchability can be a concern for fisheries management because they affect the precision and 

797 accuracy of fisheries indices of abundance that are used for stock assessment (Wilberg et al., 

798 2009). The relatively low cost of the archival tags and minimal disruption to bottom trawl survey 

799 operations suggests that archival tags could similarly be deployed on commercial fishing gear to 

800 improve understanding of how variation in light and water clarity affects catchability. 

801 Similarly, variation in near-bottom optical depth may also affect demographic rates of 

802 fish populations by altering the strength of predator-prey interactions (Eiane et al., 1999). As 

803 with trawl efficiency, the ability of a fish to feed visually can cease entirely given a 2–4 order-of-

804 magnitude change in background irradiance (e.g. Ryer et al., 2002; Utne, 1997). The effect of a 

805 change in water clarity on predator-prey interactions depends on the visual capabilities of the 

806 predator and prey, the relative visibility of prey, and foraging mode of predators (e.g. Eiane et 

807 al., 1999; Giske et al., 1994; Rohan et al., In review). Reduced water clarity affects piscivory 

808 more than planktivory (De Robertis et al., 2003), and favors tactile feeding over visual feeding 

809 (Eiane et al., 1999). 

810 Depth is often treated as a proxy for the ambient level of radiation in visual ecology 

811 studies and species distribution models (Caves et al., 2017; Kaartvedt et al., 2017, 1996; 

812 Schweikert et al., 2018) but it is not a reliable predictor of optical depth in the eastern Bering 
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813 Sea. Studies in the eastern Bering Sea may benefit from using optical depth to characterize the 

814 level of ambient radiation, such as by using it as a predictor in species distribution models. Doing 

815 so may clarify how visual habitat requirements influence fish distribution and habitat availability 

816 in the eastern Bering Sea. 

817 Changes in water clarity can indicate changes in the dynamics of primary production and 

818 thereby productivity of higher trophic levels. The trend of decreasing near-bottom optical depth 

819 over the northern middle-outer domain indicates there has been a decrease in optically active 

820 substances (i.e., chlorophyll-a, CDOM, non-algal particulate) in the water column during the 

821 survey period. The trend is notable because it occurred in an area where primary productivity 

822 continues throughout the summer by virtue of high near-surface water clarity, high nutrient 

823 availability below the mixed layer, and a gradual pycnocline (Stabeno et al., 2012a). The reason 

824 for this change may be the decline in dissolved inorganic nitrate and phosphate in the bottom 

825 layer that occurred from summer 2005 to 2016 that would presumably affect primary production 

826 and chlorophyll in the pycnocline (Stabeno et al., 2019). The change from 2005–2016 was 

827 associated with a concomitant decrease in salinity, indicating nutrient variability was mediated 

828 by physical processes (Stabeno et al., 2019). Alternative explanations could be changes in the 

829 timing of productivity or shifts in the balance between primary production and consumption. 

830 Further research is needed to evaluate whether changes in optical depth were associated with 

831 changes in salinity productivity, which may be facilitated by developing empirical models that 

832 relate Kd(z, λtag) to chlorophyll-a concentrations (e.g. Bayle et al., 2015; O’Toole et al., 2014). 

833 

834 5.4 Limitations and uncertainties 
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835 Our sampling method and analyses have several limitations and uncertainties when it 

836 comes to characterizing changes in water clarity in the eastern Bering Sea. First, we treated year 

837 as the time step for our analyses, but surveys were sampled over two months every year, 

838 progressing from interior Bristol Bay to the northwest outer continental shelf. Because individual 

839 stations were sampled at approximately the same time each year, the optical properties provide 

840 an annual snapshot of the system. However, sampling within-year, between years, and among 

841 stations was conducted at different times relative to the non-stationary phenology of 

842 phytoplankton blooms, stratification, sea-ice retreat, and tides. Second, the archival tags do not 

843 collect spectral irradiance measurements so we could not derive spectrally-resolved AOPs. This 

844 is an important limitation because photopigments of autotrophs and animals are sensitive to 

845 specific colors of light, and the different substances that cause variation in the optical 

846 environment have spectral differences in absorption and scattering. Third, we could not verify 

847 what caused variation in AOPs because we did not conduct any sampling to determine how the 

848 composition of optically-active constituents of the water column changed over space and time. 

849 Instead, our inferences are based on previous work to elucidate how physical and biological 

850 processes affect water clarity in the eastern Bering Sea. Finally, the wide acceptance angle of the 

851 archival tag photodiode suggests archival tag measurements can approximate, but are not equal 

852 to diffuse irradiance because tags are not equipped with a cosine corrector. While we do not 

853 believe these issues meaningfully affected our results and interpretation, improving sampling 

854 methods or constraining analyses to particular subsets of the data can overcome some of these 

855 limitations and uncertainties. Moreover, the patterns we identified may be useful for guiding 

856 focused process-oriented research using more sophisticated sampling methods and 

857 instrumentation. 
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858 

859 5.5 Methodological improvements 

860 Our sampling method could be modified to improve characterization of visual conditions 

861 for animals and identification of optically active constituents of the water column. We used 

862 archival tags equipped with photodiodes because they have a large range of absolute sensitivity 

863 and could withstand the rough operating conditions of bottom trawl surveys with little risk of 

864 equipment failure. This required a trade-off in terms of information quality and comparability 

865 with measurements from conventional sampling equipment. In the future, archival tags could be 

866 replaced with purpose-built optical sampling equipment if the equipment meets the operational 

867 requirements for bottom trawl surveys (e.g. ruggedized, low profile to minimize drag on the 

868 trawl). Bio-optical sampling equipment could be deployed alongside archival tags to develop 

869 models that characterize relationships between physical constituents of the water column and 

870 tag-derived AOPs in the eastern Bering Sea, as has been done using archival tags deployed on 

871 marine animals (Bayle et al., 2015; Jaud et al., 2012; O’Toole et al., 2014; Teo et al., 2009). 

872 Spectral radiometers could be deployed to derive spectrally specific AOPs or archival tags could 

873 be equipped with spectral filters that match wavelengths that are relevant to vision or other 

874 biological processes (e.g. Gal et al., 1999). All of these options represent cost-efficient solutions 

875 to improve in situ monitoring. 

876 

877 5.6 Conclusions 

878 Monitoring subsurface water clarity in marine ecosystems remains an immense logistical 

879 challenge. While burgeoning technologies such as autonomous underwater vehicles, 

880 biogeochemical Argo floats, and satellite-based high spectral resolution LiDAR may eventually 
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881 achieve broader coverage and improve subsurface monitoring, coverage gaps will persist in the 

882 near-term. In the meantime, researchers should continue to explore how existing sampling 

883 platforms can be used to fill coverage gaps. Our study provides one such method for monitoring 

884 subsurface water clarity. 

885 
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